Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Methods Mol Biol ; 2581: 201-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36413319

RESUMO

Targeted protein degradation plays a wide range of important roles in plant growth and development, but analyzing protein turnover in vivo is technically challenging. Until recently, there has been no straightforward methodology for quantifying protein dynamics at subcellular resolution during cellular transitions in plants. A tandem fluorescent protein timer (tFT) is a fusion of two different fluorescent proteins with distinct fluorophore maturation kinetics, which allows estimation of relative protein age from the ratio of fluorescence intensities of the two fluorescent proteins. Here, we describe approaches to use this technology to report relative protein lifetime in both transient and stable plant transformation systems. tFTs enable in vivo, real-time protein lifetime assessment within subcellular compartments and across tissues, permitting the analysis of protein degradation dynamics in response to stresses or developmental cues and in different genetic backgrounds.


Assuntos
Proteínas , Receptores de Antígenos Quiméricos , Proteínas/metabolismo , Plantas/metabolismo , Proteólise , Cinética , Corantes Fluorescentes , Receptores de Antígenos Quiméricos/metabolismo
3.
Sci Adv ; 8(24): eabn6153, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704578

RESUMO

In humans, the Huntingtin yeast partner K (HYPK) binds to the ribosome-associated Nα-acetyltransferase A (NatA) complex that acetylates ~40% of the proteome in humans and Arabidopsis thaliana. However, the relevance of HsHYPK for determining the human N-acetylome is unclear. Here, we identify the AtHYPK protein as the first in vivo regulator of NatA activity in plants. AtHYPK physically interacts with the ribosome-anchoring subunit of NatA and promotes Nα-terminal acetylation of diverse NatA substrates. Loss-of-AtHYPK mutants are remarkably resistant to drought stress and strongly resemble the phenotype of NatA-depleted plants. The ectopic expression of HsHYPK rescues this phenotype. Combined transcriptomics, proteomics, and N-terminomics unravel that HYPK impairs plant metabolism and development, predominantly by regulating NatA activity. We demonstrate that HYPK is a critical regulator of global proteostasis by facilitating masking of the recently identified nonAc-X2/N-degron. This N-degron targets many nonacetylated NatA substrates for degradation by the ubiquitin-proteasome system.


Assuntos
Arabidopsis , Acetiltransferase N-Terminal A , Acetilação , Acetiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Proteostase
4.
Mol Plant ; 15(4): 740-754, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35381198

RESUMO

N-terminal acetylation is one of the most common protein modifications in eukaryotes, and approximately 40% of human and plant proteomes are acetylated by ribosome-associated N-terminal acetyltransferase A (NatA) in a co-translational manner. However, the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear. Here, we identify Huntingtin Yeast partner K (HYPK), an evolutionarily conserved chaperone-like protein, as a positive regulator of NatA activity in rice. We found that loss of OsHYPK function leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses, attributable to perturbation of the N-terminal acetylome and accelerated global protein turnover. Furthermore, we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation, probably through the Ac/N-degron pathway, which could be induced by abiotic stresses. Taken together, our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover, which are essential for maintaining adaptive phenotypic plasticity in rice.


Assuntos
Oryza , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Oryza/genética , Oryza/metabolismo , Desenvolvimento Vegetal , Estresse Fisiológico
5.
Nat Commun ; 13(1): 810, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145090

RESUMO

N-terminal protein acetylation (NTA) is a prevalent protein modification essential for viability in animals and plants. The dominant executor of NTA is the ribosome tethered Nα-acetyltransferase A (NatA) complex. However, the impact of NatA on protein fate is still enigmatic. Here, we demonstrate that depletion of NatA activity leads to a 4-fold increase in global protein turnover via the ubiquitin-proteasome system in Arabidopsis. Surprisingly, a concomitant increase in translation, actioned via enhanced Target-of-Rapamycin activity, is also observed, implying that defective NTA triggers feedback mechanisms to maintain steady-state protein abundance. Quantitative analysis of the proteome, the translatome, and the ubiquitome reveals that NatA substrates account for the bulk of this enhanced turnover. A targeted analysis of NatA substrate stability uncovers that NTA absence triggers protein destabilization via a previously undescribed and widely conserved nonAc/N-degron in plants. Hence, the imprinting of the proteome with acetylation marks is essential for coordinating proteome stability.


Assuntos
Acetiltransferases/metabolismo , Plantas/metabolismo , Proteoma/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Arabidopsis/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/genética , Ribossomos/metabolismo
6.
Mol Syst Biol ; 16(7): e9464, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633465

RESUMO

Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.


Assuntos
Arabidopsis/metabolismo , Lisina/química , Acetiltransferases N-Terminal/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Acetilação , Arabidopsis/enzimologia , Arabidopsis/genética , Cloroplastos/enzimologia , Cloroplastos/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Epigenoma , Escherichia/genética , Escherichia/metabolismo , Técnicas de Inativação de Genes , Genoma de Planta , Técnicas In Vitro , Acetiltransferases N-Terminal/química , Acetiltransferases N-Terminal/genética , Peptídeos/química , Peptídeos/genética , Filogenia , Proteínas de Plantas/genética , Plastídeos/enzimologia , Proteínas Recombinantes , Espectrometria de Massas em Tandem
7.
New Phytol ; 228(2): 554-569, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32548857

RESUMO

In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants. Here we identify and characterize the first plasma membrane-anchored post-translationally acting N-acetyltransferase AtNAA60 in the reference plant Arabidopsis thaliana by the combined application of reverse genetics, global proteomics, live-cell imaging, microscale thermophoresis, circular dichroism spectroscopy, nano-differential scanning fluorometry, intrinsic tryptophan fluorescence and X-ray crystallography. We demonstrate that AtNAA60, like HsNAA60, is membrane-localized in vivo by an α-helical membrane anchor at its C-terminus, but in contrast to HsNAA60, AtNAA60 localizes to the plasma membrane. The AtNAA60 crystal structure provides insights into substrate-binding, the broad substrate specificity and the catalytic mechanism probed by structure-based mutagenesis. Characterization of the NAA60 loss-of-function mutants (naa60-1 and naa60-2) uncovers a plasma membrane-localized substrate of AtNAA60 and the importance of NAA60 during high salt stress. Our findings provide evidence for the plant-specific evolution of a plasma membrane-anchored N-acetyltransferase that is vital for adaptation to stress.


Assuntos
Arabidopsis , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Estresse Salino
8.
Plant Physiol ; 183(4): 1502-1516, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32461302

RESUMO

Nα-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. In plants, the biological function of NTA remains enigmatic. The dominant N-acetyltransferase (Nat) in Arabidopsis (Arabidopsis thaliana) is NatA, which cotranslationally catalyzes acetylation of ∼40% of the proteome. The core NatA complex consists of the catalytic subunit NAA10 and the ribosome-anchoring subunit NAA15. In human (Homo sapiens), fruit fly (Drosophila melanogaster), and yeast (Saccharomyces cerevisiae), this core NatA complex interacts with NAA50 to form the NatE complex. While in metazoa, NAA50 has N-acetyltransferase activity, yeast NAA50 is catalytically inactive and positions NatA at the ribosome tunnel exit. Here, we report the identification and characterization of Arabidopsis NAA50 (AT5G11340). Consistent with its putative function as a cotranslationally acting Nat, AtNAA50-EYFP localized to the cytosol and the endoplasmic reticulum but also to the nuclei. We demonstrate that purified AtNAA50 displays Nα-terminal acetyltransferase and lysine-ε-autoacetyltransferase activity in vitro. Global N-acetylome profiling of Escherichia coli cells expressing AtNAA50 revealed conservation of NatE substrate specificity between plants and humans. Unlike the embryo-lethal phenotype caused by the absence of AtNAA10 and AtNAA15, loss of NAA50 expression resulted in severe growth retardation and infertility in two Arabidopsis transfer DNA insertion lines (naa50-1 and naa50-2). The phenotype of naa50-2 was rescued by the expression of HsNAA50 or AtNAA50. In contrast, the inactive ScNAA50 failed to complement naa50-2 Remarkably, loss of NAA50 expression did not affect NTA of known NatA substrates and caused the accumulation of proteins involved in stress responses. Overall, our results emphasize a relevant role of AtNAA50 in plant defense and development, which is independent of the essential NatA activity.


Assuntos
Acetiltransferases/metabolismo , Acetiltransferases/genética , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
9.
Plant Physiol ; 182(2): 792-806, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31744933

RESUMO

N∝-terminal acetylation (NTA) is one of the most abundant protein modifications in eukaryotes. In humans, NTA is catalyzed by seven Nα-acetyltransferases (NatA-F and NatH). Remarkably, the plant Nat machinery and its biological relevance remain poorly understood, although NTA has gained recognition as a key regulator of crucial processes such as protein turnover, protein-protein interaction, and protein targeting. In this study, we combined in vitro assays, reverse genetics, quantitative N-terminomics, transcriptomics, and physiological assays to characterize the Arabidopsis (Arabidopsis thaliana) NatB complex. We show that the plant NatB catalytic (NAA20) and auxiliary subunit (NAA25) form a stable heterodimeric complex that accepts canonical NatB-type substrates in vitro. In planta, NatB complex formation was essential for enzymatic activity. Depletion of NatB subunits to 30% of the wild-type level in three Arabidopsis T-DNA insertion mutants (naa20-1, naa20-2, and naa25-1) caused a 50% decrease in plant growth. A complementation approach revealed functional conservation between plant and human catalytic NatB subunits, whereas yeast NAA20 failed to complement naa20-1 Quantitative N-terminomics of approximately 1000 peptides identified 32 bona fide substrates of the plant NatB complex. In vivo, NatB was seen to preferentially acetylate N termini starting with the initiator Met followed by acidic amino acids and contributed 20% of the acetylation marks in the detected plant proteome. Global transcriptome and proteome analyses of NatB-depleted mutants suggested a function of NatB in multiple stress responses. Indeed, loss of NatB function, but not NatA, increased plant sensitivity toward osmotic and high-salt stress, indicating that NatB is required for tolerance of these abiotic stressors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Acetiltransferase N-Terminal B/metabolismo , Plântula/metabolismo , Estresse Fisiológico/genética , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Biologia Computacional , Perfilação da Expressão Gênica , Ontologia Genética , Técnicas In Vitro , Mutagênese Insercional , Acetiltransferase N-Terminal B/genética , Pressão Osmótica , Proteoma/genética , Proteoma/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos da radiação
10.
Plant Physiol ; 180(4): 2272-2289, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31227619

RESUMO

In plants, the protein RPM1-INTERACTING PROTEIN4 (RIN4) is a central regulator of both pattern-triggered immunity and effector-triggered immunity. RIN4 is targeted by several effectors, including the Pseudomonas syringae protease effector AvrRpt2. Cleavage of RIN4 by AvrRpt2 generates potentially unstable RIN4 fragments, whose degradation leads to the activation of the resistance protein RESISTANT TO P. SYRINGAE2. Hence, identifying the determinants of RIN4 degradation is key to understanding RESISTANT TO P. SYRINGAE2-mediated effector-triggered immunity, as well as virulence functions of AvrRpt2. In addition to RIN4, AvrRpt2 cleaves host proteins from the nitrate-induced (NOI) domain family. Although cleavage of NOI domain proteins by AvrRpt2 may contribute to pattern-triggered immunity regulation, the (in)stability of these proteolytic fragments and the determinants regulating their stability remain unexamined. Notably, a common feature of RIN4, and of many NOI domain protein fragments generated by AvrRpt2 cleavage, is the exposure of a new N-terminal residue that is destabilizing according to the N-end rule. Using antibodies raised against endogenous RIN4, we show that the destabilization of AvrRpt2-cleaved RIN4 fragments is independent of the N-end rule pathway (recently renamed the N-degron pathway). By contrast, several NOI domain protein fragments are genuine substrates of the N-degron pathway. The discovery of this set of substrates considerably expands the number of known proteins targeted for degradation by this ubiquitin-dependent pathway in plants. These results advance our current understanding of the role of AvrRpt2 in promoting bacterial virulence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Pseudomonas syringae/patogenicidade , Ubiquitina/metabolismo , Virulência
11.
Plant Physiol ; 180(2): 718-731, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872425

RESUMO

Targeted protein degradation is an important and pervasive regulatory mechanism in plants, required for perception and response to the environment as well as developmental signaling. Despite the significance of this process, relatively few studies have assessed plant protein turnover in a quantitative fashion. Tandem fluorescent protein timers (tFTs) offer a powerful approach for the assessment of in vivo protein turnover in distinct subcellular compartments of single or multiple cells. A tFT is a fusion of two different fluorescent proteins with distinct fluorophore maturation kinetics, which enable protein age to be estimated from the ratio of fluorescence intensities of the two fluorescent proteins. Here, we used short-lived auxin signaling proteins and model N-end rule (N-recognin) pathway reporters to demonstrate the utility of tFTs for studying protein turnover in living plant cells of Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana We present transient expression of tFTs as an efficient screen for relative protein lifetime, useful for testing the effects of mutations and different genetic backgrounds on protein stability. This work demonstrates the potential for using stably expressed tFTs to study native protein dynamics with high temporal resolution in response to exogenous or endogenous stimuli.


Assuntos
Arabidopsis/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas de Plantas/metabolismo , Genes Reporter , Meia-Vida , Ácidos Indolacéticos/metabolismo , Epiderme Vegetal/metabolismo , Transdução de Sinais , Fatores de Tempo
12.
J Exp Bot ; 69(19): 4555-4568, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29945174

RESUMO

N-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. The majority of proteins are acetylated at their N-terminus in a co-translational manner by ribosome-associated N-terminal acetyltransferases (NATs). However, the recent discovery of Golgi membrane-localized NATs in metazoa, and plastid-localized NATs in plants challenged the dogma of static, co-translational imprinting of the proteome by NTA. Indeed, NTA by the cytosolic NatA is highly dynamic and under hormonal control in plants. Such active control has not been evidenced yet in other eukaryotes and might be an adaptation to the sessile lifestyle of plants forcing them to cope with diverse environmental challenges. The function of NTAs for individual proteins is distinct and yet unpredictable. In yeast and humans, NTA has been shown to affect protein-protein interactions, subcellular localization, folding, aggregation, or degradation of a handful of proteins. In particular, the impact of NTA on the protein turnover is documented by diverse examples in yeast. Consequently, NTA was recently dicovered to be a degradation signal in a distinct branch of the N-end rule pathway, ubiquitin-mediated proteolysis. In this review, we summarize the current knowledge on the NAT machinery in higher plants and discuss the potential function of NTA during biotic and abiotic stresses.


Assuntos
Acetilação , Acetiltransferases N-Terminal/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
13.
Nat Commun ; 8(1): 1174, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079776

RESUMO

Growth of eukaryotic cells is regulated by the target of rapamycin (TOR). The strongest activator of TOR in metazoa is amino acid availability. The established transducers of amino acid sensing to TOR in metazoa are absent in plants. Hence, a fundamental question is how amino acid sensing is achieved in photo-autotrophic organisms. Here we demonstrate that the plant Arabidopsis does not sense the sulfur-containing amino acid cysteine itself, but its biosynthetic precursors. We identify the kinase GCN2 as a sensor of the carbon/nitrogen precursor availability, whereas limitation of the sulfur precursor is transduced to TOR by downregulation of glucose metabolism. The downregulated TOR activity caused decreased translation, lowered meristematic activity, and elevated autophagy. Our results uncover a plant-specific adaptation of TOR function. In concert with GCN2, TOR allows photo-autotrophic eukaryotes to coordinate the fluxes of carbon, nitrogen, and sulfur for efficient cysteine biosynthesis under varying external nutrient supply.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Enxofre/química , Arabidopsis/genética , Autofagia , Genótipo , Meristema/metabolismo , Fenótipo , Desenvolvimento Vegetal , Raízes de Plantas/metabolismo , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Transdução de Sinais , Sulfetos
14.
Front Plant Sci ; 7: 1669, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27891135

RESUMO

Nitric oxide (NO) has emerged as a signaling molecule in plants being involved in diverse physiological processes like germination, root growth, stomata closing and response to biotic and abiotic stress. S-nitrosoglutathione (GSNO) as a biological NO donor has a very important function in NO signaling since it can transfer its NO moiety to other proteins (trans-nitrosylation). Such trans-nitrosylation reactions are equilibrium reactions and depend on GSNO level. The breakdown of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR). In this way, this enzyme controls S-nitrosothiol levels and regulates NO signaling. Here we report that Arabidopsis thaliana GSNOR activity is reversibly inhibited by H2O2in vitro and by paraquat-induced oxidative stress in vivo. Light scattering analyses of reduced and oxidized recombinant GSNOR demonstrated that GSNOR proteins form dimers under both reducing and oxidizing conditions. Moreover, mass spectrometric analyses revealed that H2O2-treatment increased the amount of oxidative modifications on Zn2+-coordinating Cys47 and Cys177. Inhibition of GSNOR results in enhanced levels of S-nitrosothiols followed by accumulation of glutathione. Moreover, transcript levels of redox-regulated genes and activities of glutathione-dependent enzymes are increased in gsnor-ko plants, which may contribute to the enhanced resistance against oxidative stress. In sum, our results demonstrate that reactive oxygen species (ROS)-dependent inhibition of GSNOR is playing an important role in activation of anti-oxidative mechanisms to damping oxidative damage and imply a direct crosstalk between ROS- and NO-signaling.

15.
Nat Commun ; 6: 7640, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184543

RESUMO

N-terminal acetylation (NTA) catalysed by N-terminal acetyltransferases (Nats) is among the most common protein modifications in eukaryotes, but its significance is still enigmatic. Here we characterize the plant NatA complex and reveal evolutionary conservation of NatA biochemical properties in higher eukaryotes and uncover specific and essential functions of NatA for development, biosynthetic pathways and stress responses in plants. We show that NTA decreases significantly after drought stress, and NatA abundance is rapidly downregulated by the phytohormone abscisic acid. Accordingly, transgenic downregulation of NatA induces the drought stress response and results in strikingly drought resistant plants. Thus, we propose that NTA by the NatA complex acts as a cellular surveillance mechanism during stress and that imprinting of the proteome by NatA is an important switch for the control of metabolism, development and cellular stress responses downstream of abscisic acid.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Acetiltransferase N-Terminal A/genética , Estresse Fisiológico/genética , Acetilação , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo , Escherichia coli , Células HEK293 , Humanos , Acetiltransferase N-Terminal A/metabolismo , Organismos Geneticamente Modificados , Reação em Cadeia da Polimerase em Tempo Real
16.
Plant Cell ; 27(5): 1547-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25966763

RESUMO

Nod-like receptors (NLRs) serve as immune receptors in plants and animals. The stability of NLRs is tightly regulated, though its mechanism is not well understood. Here, we show the crucial impact of N-terminal acetylation on the turnover of one plant NLR, Suppressor of NPR1, Constitutive 1 (SNC1), in Arabidopsis thaliana. Genetic and biochemical analyses of SNC1 uncovered its multilayered regulation by different N-terminal acetyltransferase (Nat) complexes. SNC1 exhibits a few distinct N-terminal isoforms generated through alternative initiation and N-terminal acetylation. Its first Met is acetylated by N-terminal acetyltransferase complex A (NatA), while the second Met is acetylated by N-terminal acetyltransferase complex B (NatB). Unexpectedly, the NatA-mediated acetylation serves as a degradation signal, while NatB-mediated acetylation stabilizes the NLR protein, thus revealing antagonistic N-terminal acetylation of a single protein substrate. Moreover, NatA also contributes to the turnover of another NLR, RESISTANCE TO P. syringae pv maculicola 1. The intricate regulation of protein stability by Nats is speculated to provide flexibility for the target protein in maintaining its homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Acetiltransferases N-Terminal/metabolismo , Acetilação , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Clonagem Molecular , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Acetiltransferases N-Terminal/genética , Estabilidade Proteica , Plântula/enzimologia , Plântula/genética , Alinhamento de Sequência , /genética
17.
Proteomics ; 15(14): 2426-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25951519

RESUMO

Protein N(α) -terminal acetylation represents one of the most abundant protein modifications of higher eukaryotes. In humans, six N(α) -acetyltransferases (Nats) are responsible for the acetylation of approximately 80% of the cytosolic proteins. N-terminal protein acetylation has not been evidenced in organelles of metazoans, but in higher plants is a widespread modification not only in the cytosol but also in the chloroplast. In this study, we identify and characterize the first organellar-localized Nat in eukaryotes. A primary sequence-based search in Arabidopsis thaliana revealed seven putatively plastid-localized Nats of which AT2G39000 (AtNAA70) showed the highest conservation of the acetyl-CoA binding pocket. The chloroplastic localization of AtNAA70 was demonstrated by transient expression of AtNAA70:YFP in Arabidopsis mesophyll protoplasts. Homology modeling uncovered a significant conservation of tertiary structural elements between human HsNAA50 and AtNAA70. The in vivo acetylation activity of AtNAA70 was demonstrated on a number of distinct protein N(α) -termini with a newly established global acetylome profiling test after expression of AtNAA70 in E. coli. AtNAA70 predominately acetylated proteins starting with M, A, S and T, providing an explanation for most protein N-termini acetylation events found in chloroplasts. Like HsNAA50, AtNAA70 displays N(ε) -acetyltransferase activity on three internal lysine residues. All MS data have been deposited in the ProteomeXchange with identifier PXD001947 (http://proteomecentral.proteomexchange.org/dataset/PXD001947).


Assuntos
Arabidopsis/enzimologia , Acetiltransferases N-Terminal/análise , Plastídeos/enzimologia , Acetilação , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Conformação Proteica , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...